THE HORUS RETICLE
Basic Information and Instructions
Thank you for your interest in Horus reticles.

Horus reticles enable shooters to reach greater distances more efficiently and more accurately.

Using Horus rifle scope and spotting scope reticles in combination allows for precise communication between shooter and spotter.

Horus reticles are favored by top sportsmen and marksmen around the world.

When time is critical, exclusive Horus features such as Instant Second-Shot Correction and Rapid Ranging give you the edge—especially if you’re engaging multiple targets.

This booklet explains

- Basics of the Horus Reticle
- Rapid Ranging
- Instant Second-Shot Correction
- And much more

Horus reticles are available in many brands of rifle scopes.

WARNING!

Follow rifle and rifle scope manufacturers’ instructions on the safe use and proper handling of firearms.

Please see inside back cover for more information on using firearms safely.

When using a rifle scope, NEVER look directly at the sun or into bright lights. Doing so risks serious damage to your vision.

© 2017 Horus Vision
Focusing the Reticle

The Horus reticle consists of the crosshairs, grid pattern, hash marks, and other graphic elements you see when you look into the scope.

To focus the reticle, turn the ring closest to your eye—called the eyepiece ring, ocular ring, or ocular diopter adjustment.

Most scopes have settings from -3 to +2.

Step-by-Step Instructions

1. Set scope magnification to a high level.
2. Rotate the eyepiece ring (ocular ring) in either direction as far as it will go.
3. Point the rifle and scope toward a distant cloud or the sky itself. Look into the scope at the reticle—preferably with both eyes open, or however you normally look into a scope.
4. Rotate the eyepiece ring until the reticle comes into sharp, clear focus.
5. When the reticle is in focus, close your eyes for three or four seconds, then reopen them. The reticle should still be in sharp, clear focus. If not, repeat steps 1 through 5 until the reticle remains in proper focus.
6. Set scope magnification to lowest level, then look into the scope to confirm that the reticle is in sharp, clear focus. If not, repeat steps 1 through 6.

Parallax

Before you adjust the scope for parallax, you must focus the reticle as explained on the previous page.

“Parallax” refers to an apparent difference in the position of an object when viewed from two different lines of sight. (For example, a car’s needle-type speedometer indicates a particular speed when seen by the driver, but from the angle of the passenger, it appears to show a slightly different speed.) Humans and many other animals use the parallax of their two eyes for depth perception.

At shorter distances, parallax effects on rifle scopes are quite small, so they are typically ignored in lower-magnification scopes. But higher-magnification scopes and any scopes used for long-range shooting should have a parallax adjustment knob—usually located on the left side of the scope.

The parallax adjustment is made to the lens farthest from your eye. It brings the target into exactly the same focal plane as the reticle, which eliminates the parallax effect.

Adjusting for Parallax

1. Looking through the scope at a distant object, move your head up, down, right, and left. If the position of the object appears to change in relation to the reticle, you have a parallax problem and need to adjust your scope.
2. Looking through the scope, turn the parallax adjustment knob until the position of the object in relation to the reticle no longer changes when you move your head. When the relative positions of the object and the reticle do not change, you no longer have a parallax problem.
3. Each time you shift to a target at a different distance, or environmental conditions change, you must adjust for parallax.
Basic Features of the Horus Reticle

Rapid Range Bars
Rapid Range Bars are short horizontal lines that look like descending steps. On some Horus reticles, like the H59 shown here and on the next page, the Rapid Range Bars are located just above the main horizontal crosshair and on both sides of the main vertical crosshair. On some other Horus reticles, such as the H371, the ranging bars are separated from the main crosshair and located in different places. See pages 12–13 on using the Rapid Range Bars.

Moving Target Holds
Moving Target Holds are the numbered vertical hash marks located on the upper side of the main horizontal crosshair and on both sides of the main vertical crosshair. The mark numbered “2” is for a target moving at 2 mph; “4” for 4 mph; and so on. For example, if a target is moving from right to left at 4 mph, hold on the second hash mark to the right of the main vertical crosshair—the hash mark numbered “4.”

Horus Grid Pattern
The Horus Grid Pattern features multiple hold points for elevation and windage. See close-up.

Elevation: Horizontal lines below the main horizontal crosshair are 1 mil apart and are numbered. (Only even numbers are shown). Small hash marks on the main vertical crosshair are 0.2 mils apart. Dots provide additional hold points. See close-up.

Windage: Large vertical hash marks on the horizontal lines are 1 mil apart. Small vertical hash marks are 0.2 mils apart. Dots provide additional hold points. See close-up.
Zeroing Your Rifle

Set up a target. It can be as simple as a big sheet of paper with a dot or square in the middle. Pick the distance at which you wish to zero your rifle. Many shooters use 100 yards or 100 meters.

Look through the scope and put the crosshairs on the target. Take your shot.

First shot missed, low and to the right.

With eye to scope, note the point on the Horus Grid Pattern where the bullet struck. Use the Horus Grid Pattern to measure the vertical and horizontal adjustments you need to make with the turret knobs of your scope. (In the example shown here, 6 mils up and 3 mils to the right.)

Once you’ve adjusted your scope, put the crosshairs on the target and take another shot. Your rifle should now be zeroed. If not, correct again using the same procedure.
Adjusting for Elevation and Wind

For this example, we will use a .308 rifle firing 175-grain bullets with a 10-mph wind from the right at a 90° angle (a “full-value wind”).

Say you’ve zeroed your rifle at 100 yards and want to take a shot at 500 yards. Referring to the example range card shown here, hold for elevation at 3.2 mils down from the main horizontal crosshair, and hold for windage at 0.5 mils into the wind.

<table>
<thead>
<tr>
<th>RANGE CARD</th>
<th>.308, 10 mph wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCE</td>
<td>ELEV</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>.50</td>
</tr>
<tr>
<td>300</td>
<td>1.20</td>
</tr>
<tr>
<td>400</td>
<td>2.16</td>
</tr>
<tr>
<td>500</td>
<td>3.20</td>
</tr>
<tr>
<td>600</td>
<td>4.45</td>
</tr>
<tr>
<td>700</td>
<td>5.83</td>
</tr>
<tr>
<td>800</td>
<td>7.40</td>
</tr>
<tr>
<td>900</td>
<td>9.16</td>
</tr>
<tr>
<td>1,000</td>
<td>11.17</td>
</tr>
</tbody>
</table>

With eye to scope, find the hold point on the reticle and move rifle up and to the left, “dragging” the hold point until it is on the target. Take your shot.

Say you now want to try a 700-yard shot with the same 10-mph right-to-left crosswind. The example range card shows the elevation hold at 5.8 down and the windage hold at 1.0 mil into the wind.

Find that hold point and drag it up and to the left until it is on the target. Take your shot. It should be a bullseye.

If you missed, use the exclusive Horus feature Instant Second-Shot Correction (see pages 10–11).

*Most Horus reticles are calibrated in “mils” (U.S. Marine Corps milliradians), and some in “minutes of angle” (MOA).
Making Instant Second-Shot Corrections

Firing solution calls for 8 mils elevation. Put square bullseye target on line 8 and shoot. (Assume no wind. Target should be at intersection of line 8 and main vertical crosshair.)

First shot missed the bullseye, high and to the right.

Still looking through the scope, keep bullseye target on original aiming point (line 8 and main vertical crosshair). Note that the impact point of the first bullet is on line 7, two hash marks to the right. So you need to adjust down and to the left.

Now make the first bullet’s impact point your new aiming point. With eye to scope, move rifle down and left until the first bullet’s impact point—line 7, 2 hash marks to right of main vertical crosshair—covers the bullseye target.

Take your shot. It should be a bullseye. If not, correct again using the same procedure.
Rapid Ranging

Rapid Range Bars, exclusive to Horus, enable you to estimate the range to common-sized targets quickly and accurately. On some Horus reticles, such as the H59 shown on page 6, the Rapid Range Bars are just above the main horizontal crosshair and are not numbered. On the H371 shown here, the Rapid Range Bars are in the upper left quadrant and are numbered. Regardless of where the Rapid Range Bars are located, they have the same values (height in mils) and are used in the same way.

Use the Rapid Range Bars with the numbered horizontal lines to find your elevation hold.

With eye to scope, find the best fit for the target (here, a red square) between a specific Rapid Range Bar and the horizontal line below it.

Rapid Ranging — 12-inch Target

For 12-inch targets, the Rapid Range Bars are used for the 12-inch drill. For rifles with similar ballistics and for ranges of approximately 600 meters and under, the Rapid Range Bars provide an extremely fast and accurate gauge for the correct elevation hold needed to engage the selected target.

For Rapid Range Bars that have the number directly above the line (as done in the H371), the corresponding top number indicates the mil line one should use for an elevation hold. For Rapid Range Bars placed on the main horizontal crosshair (H58, H59, Tremor3) there is no number above the bars, but a mph indicator below each bar. The corresponding mph indicators are conveniently double the required mil hold.

For the 12-inch drill, simply bracket the 12-inch target between the bottom horizontal line of the Rapid Range Bar and the correct upper line. If using a H371 type bar, take the number on top and find the corresponding elevation hold in the Horus grid. If using a H58, H59 or Tremor 3 style, use the corresponding mph indicator below and divide it by two to obtain the elevation hold. (If the number below the bracketed target is 10, the correct mil hold is 10/2 = 5 mils).

Rapid Ranging — 18-inch Target

In this example, you look through the scope and find that the best fit for an 18-inch-high target is under Rapid Range Bar 3.

Refer to the Horus Rapid Range Bars Table (Yards). Follow the 18” target row to the column under Range Bar 3 to find that the target is 714 yards away.

Rapid Ranging — 18-inch Target

For more detailed information, please visit the Horus Vision website: www.horusvision.com.

HORUS RAPID RANGE BARS TABLE (METERS)

<table>
<thead>
<tr>
<th>Target Size Inches</th>
<th>(1.0)</th>
<th>(0.9)</th>
<th>(0.8)</th>
<th>(0.7)</th>
<th>(0.6)</th>
<th>(0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6”</td>
<td>153</td>
<td>169</td>
<td>190</td>
<td>218</td>
<td>254</td>
<td>304</td>
</tr>
<tr>
<td>12”</td>
<td>304</td>
<td>338</td>
<td>380</td>
<td>435</td>
<td>505</td>
<td>609</td>
</tr>
<tr>
<td>18”</td>
<td>457</td>
<td>507</td>
<td>571</td>
<td>653</td>
<td>761</td>
<td>914</td>
</tr>
<tr>
<td>24”</td>
<td>610</td>
<td>677</td>
<td>761</td>
<td>870</td>
<td>1015</td>
<td>1218</td>
</tr>
<tr>
<td>30”</td>
<td>761</td>
<td>846</td>
<td>952</td>
<td>1086</td>
<td>1270</td>
<td>1524</td>
</tr>
<tr>
<td>36”</td>
<td>914</td>
<td>1015</td>
<td>1142</td>
<td>1307</td>
<td>1524</td>
<td>1828</td>
</tr>
<tr>
<td>72”</td>
<td>1828</td>
<td>2031</td>
<td>2285</td>
<td>2611</td>
<td>3046</td>
<td>3656</td>
</tr>
</tbody>
</table>

Horus provides free Rapid Range Bars Tables in either yards or meters. Request yours by calling (866) 568-2926.
Estimating Range with the Horus Grid Pattern

The Horus Grid Pattern may be used to estimate the range if you know the target’s size (height or width / length).

In the examples below, we are using the H59 reticle and working in mils.

FINDING RANGE IN YARDS
To determine the range in yards, multiply the target size (in inches) by 27.77 (constant) and divide by the size of the target as read through the reticle (in mils*).

\[
\frac{\text{Actual Target Size (inches)} \times 27.77}{\text{Scoped Target Size (mils)}} = \text{Range (yards)}
\]

USING TARGET WIDTH (LENGTH) TO FIND RANGE
You are shooting at a square target 36” wide by 36” high. Looking through the scope, you see that the target’s width measures 2 mils on the Horus reticle.

Applying the formula, you find that the range is 500 yards.

YARDS

\[
\frac{\text{Actual Target Size 36 (inches)} \times 27.77}{\text{Scoped Target Size 2 (mils)}} = 499.86 \text{ (yards)}
\]

FINDING RANGE IN METERS
To determine the range in meters, use the same basic formula, but multiply the target size (in inches) by 25.4 (constant).

\[
\frac{\text{Actual Target Size (inches)} \times 25.4}{\text{Scoped Target Size (mils)}} = \text{Range (meters)}
\]

USING TARGET HEIGHT TO FIND RANGE
You are shooting at a square target 36” wide by 36” high. Looking through the scope, you see that the target’s height measures 2 mils on the Horus reticle.

Applying the formula, you find that the range is 457 meters.

METERS

\[
\frac{\text{Actual Target Size 36 (inches)} \times 25.4}{\text{Scoped Target Size 2 (mils)}} = 457.2 \text{ (meters)}
\]

*Most Horus reticles are calibrated in “mils” (U.S. Marine Corps milliradians), and some in “minutes of angle” (MOA).
Estimating Range with the MOA Range Finder

Some Horus reticles have a built-in **MOA Range Finder** (looks like a backward, forward, or upside-down “L”) for estimating the range to a target of known size. (MOA stands for “minutes of angle.”)

KNOW THE TARGET’S SIZE

In this example, a square target, 36” x 36”.

Measure target with MOA Range Finder within the reticle. Target measures 6.

Determine range by plugging your measurements into the standard range finding formula:

\[
\frac{\text{Target Height (inches)}}{\text{MOA Range Finder Measurement}} \times 100 = \text{Range (yards)}
\]

MOA Range Finder Measurement:

\[
\frac{36” \times \text{Target Height}}{6 \times \text{Range Finder Measurement}} \times 100 = 600 \text{ (yards)}
\]

Elevate for range and adjust for windage using your range card or ballistics software.

TAKE YOUR SHOT!
Engaging Multiple Targets at Different Ranges

Enter data for elevation and windage holds at expected ranges and wind speed on your range card, or use your ballistics software.

Example range card data calculated for a .308 with a 10-mph wind. Horus reticles work with all types of rifles and all calibers of ammunition.

Below: 18” x 18” square targets at 100, 400, and 800 yards. Reticle views show images and holds for these ranges, taken from example range card.
Horus Reticles
A Selection Including New Choices

Horus reticles are favored by top sportsmen and marksmen around the world.

Horus reticles make every shooter more proficient.

Horus reticles enable shots at distances you never imagined.

Everyone who shoots more than 300 yards needs a Horus reticle.

Horus reticles—the choice of experts for long-range riflery—are distinguished by their exclusive features, such as multiple hold points for quick windage and elevation adjustments, built-in range finders, and instant Second-Shot Correction.

See the full array of Horus reticles at www.horusvision.com

Featured Reticles
Our family of Tremor reticles provide advanced aiming features for added precision, while the H59 and Tremor3 continue as our most popular and widely-used reticles.
The Tremor family of reticles aren’t ballistic reticles, nor pure hold over reticles but reflect the ultimate combinations of speed shooting drills, hold over grids, rapid ranging/milling features, and the ability to calibrate wind dots to your chosen ballistics.

The culmination of these features make the Tremor family of reticles a living breathing targeting guide that can be custom tailored to any shooting solution.

Patented Wind Dots
Patented wind dot features are adaptable to your shooting solution using the exact ballistics of your rifle.

Highly-Refined Mil Markers
Very fine reticle to aid in precise aiming at high power and distant ranges. Refined “chevron” mil markers subtend to 0.1 mils. Versatile marker groupings for measuring targets occur throughout the reticle.

Rapid Range Bars
The Tremors’ **Rapid Range Bars** enable quick estimates of the range to targets of known size. Using these Horus features for rapid ranging can eliminate the need to carry a separate range finder. For an explanation of how to use these remarkable tools, see pages 12–17.

Moving Target Holds
Moving Target Holds—the numbered vertical hash marks on both sides of the main horizontal crosshair—indicate leads for targets moving at speeds up to 10 mph. (See pages 4–5.)

The Tremor3 retains features of the H59 and adds **Wind Dots**—angled arrays of dots indicating windage holds. Wind Dot value is determined by the ballistics of your rifle.

Like all Horus reticles, the Tremor3 is fine-tuned for shots at both close and extended ranges. This reticle is growing in favor with military organizations.

The Tremor3 has the Horus **Rapid Range Bars** above the main horizontal crosshair for quickly estimating the range to a target of known size (see pages 12–13).

The Tremor3 includes **Moving Target Holds**—vertical hash marks above the main horizontal crosshair—for 2, 4, 6, 8, 10, and 20 mph.

The Tremor3 is based on U.S.M.C. mils. It may be used in tandem with the Tremor4 Spotting Reticle (see next page).

For more information on Wind Dots, visit www.horusvision.com
The Tremor2 reticle was designed for faster target acquisition, with several refined milling scales built into the main vertical and horizontal cross hairs. These refined milling chevrons allow a more subtle use of the 12 inch drill.

The Tremor2 refined mil markers are calibrated down to 0.1 mils.

The Tremor 2 includes drop line numbers 1-9 which serve as 4 mph moving target holds.

Wind dots are included with the forth dot being a small cross. Wind dots can be calibrated to your ballistics.

Additional windage markers at extreme elevation holds.

Standard Horus grid allows use at extended long range.

The Tremor4 Spotting Reticle, designed with the advanced rifleman in mind, is designed to work in tandem with the Tremor3 Rifle Scope Reticle.

The Tremor4 is calibrated in mils with an overlay of Wind Dots—angled arrays of dots indicating windage holds. Wind Dot value is determined by the ballistics of your rifle.

The Tremor4 also has numbered Horus Rapid Range Bars for quickly estimating the range to a target of known size (see pages 12–13).

The crosshairs and grid pattern of the Tremor4 are located in the lower half of the field of view. This allows unobstructed observation of the target in the upper half of the field of view.

For more information on Wind Dots, visit www.horusvision.com
H59™ and H58™ Rifle Scope Reticles

The H59 (opposite page, top) is popular with hunters, law enforcement, and military marksmen. Like all Horus reticles, the H59 is fine-tuned for shots at both close and extended ranges. Some scope manufacturers may offer an illuminated H59 reticle for twilight and other low-light conditions.

Both the H59 and H58 deliver an exceptionally clear and uncluttered view by utilizing holdover dots to extend wind and elevation hold points beyond the Horus Grid.

Both reticles are based on the U.S.M.C. mil-dot system. Most Horus reticles are calibrated in mils (U.S. Marine Corps milliradians).

Hold Points
Like most Horus reticles, both the H59 and the H58 provide numerous hold points—unlike conventional reticles, which are mostly empty except for simple crosshairs. Use the Horus hold points for many combinations of elevation and windage adjustments. No need to turn your turret knobs. (See pages 4–5 and 8–9.)

Rapid Ranging
The Rapid Range Bars (on both reticles) and the MOA Range Finder (on the H582) enable quick estimates of the range to targets of known size. Using these Horus features for Rapid Ranging can eliminate the need to carry a separate range finder. For an explanation of how to use these remarkable tools, see pages 12–17.

Moving Target Holds
Moving Target Holds—the numbered vertical hash marks on both sides of the main horizontal crosshair—indicate leads for targets moving at speeds up to 10 mph. (See pages 4–5.)
H371™ Rifle Scope Reticle

Recommended for extreme-range shooters, the H371 reticle is based on Horus’s popular H37. Both are calibrated in U.S.M.C. mils.

As in the H37, the intersection of the H371’s main crosshairs is located 4 mils higher in the field of view than in most other reticles. This placement allows more of the Horus Grid Pattern to remain in view—and longer-range shots to be taken—with the scope set at higher levels of magnification.

The H371 has Rapid Range Bars in the upper left quadrant. Use them for quickly estimating the range to a target of known size (height). (See pages 12–13 for instructions.)

Secondary horizontal lines and large hash marks—on the horizontal lines as well as on the main vertical crosshair—are spaced 1 mil apart. Small hash marks are 0.2 mils apart.

Some manufacturers may offer the H371 reticle in scopes with illumination.

H104™ Rifle Scope Reticle

The H104 is for designated marksmen using common-caliber rifles (.223, .308, etc.). When training time is short, the user-friendly H104 is your answer. In a day or two of practice, you can learn to hit targets accurately out to 500 meters.

The H104 is based on U.S.M.C. mils. Lines and large hash marks are 1 mil apart. Inner and outer rings help the shooter focus rapidly on the target. Putting any game-sized target within the inner ring enables immediate shots from 0 to 300 yards. The bottom of the inner ring is the elevation hold for 400 yards.

Three Rapid Ranging features—the Horus Grid Pattern, Rapid Range Bars in the upper left quadrant, and MOA Range Finder (backward, upside-down “L”) in the lower left quadrant—may be used to estimate the range to a target of known size (see pages 4–5 and 14–17).

The H104 includes Moving Target Holds—numbered hash marks on top of the main horizontal crosshair. Number 1 is for a target moving at 10 mph, 2 for 20, and so on up to 60 mph. Use the right or left edge of the inner ring for a 4-mph target.

Wind Lines: Angled dashed lines spreading out indicate windage holds for 10- and 20-mph winds.
The H131, designed with the American hunter in mind, uses minutes of angle (MOA)—a system many hunters know.

The small inner ring and the four hash marks within it enable quick aiming at targets from 0 to 300 yards. A bit lower, small diamonds on the main vertical crosshair provide quick holds for targets at greater distances. Angled dashed lines indicate windage holds for 10- and 20-mph winds.

The H131 also has Moving Target Holds (5, 10, 15, and 20 mph) on the main horizontal crosshair. Angled dashed lines indicate windage holds for 10- and 20-mph winds.

In the upper right quadrant, the H131 features a special set of MOA Rapid Range Bars calibrated for a 18-inch-high target. If the target fits best under Range Bar 1, the range is 100 yards; under Range Bar 2, 200 yards; and so on. (See pages 12–13.)

Also at the top of the reticle is the L-shaped Horus MOA Range Finder. Both of these remarkable tools enable quick estimates of the range to a target of known size. (See pages 12–13 and 16–17.)

For the American rifleman, Horus offers the H701, which uses the Horus Grid Pattern calibrated in Minutes of Angle (MOA).

The upper right quadrant features a special set of MOA Rapid Range Bars calibrated for a 10-inch-high target. If the target fits best under Range Bar 1, the range is 100 yards; under Range Bar 2, 200 yards; and so on. (See pages 12–13.)

Also in the upper right quadrant, the H701 has the L-shaped Horus MOA Range Finder (see pages 16–17.)

In addition, the H701 has Moving Target Holds (4, 8, 12, and 16 mph) below the main horizontal crosshair.
The H362 has numbered Horus Rapid Range Bars for quickly estimating the range to a target of known size (see pages 12–13). Numbers indicate distance (in mils) of a specific Range Bar from the horizontal line beneath it. The Range Bar on the main vertical crosshair is 1.0 mils above the line.

Another feature of the H362 is a Horus MOA Range Finder (upside-down, backwards “L”) in the lower left quadrant (see pages 16–17).

The H362 is based on U.S.M.C. mils.

Limit of Accuracy
When you shoot with any reticle, the limit of accuracy is determined not by the reticle itself, which is precisely located on the glass within the scope and does not move.

The limit of accuracy is determined by your skill, the accuracy of your rifle, and the reliability of the ammunition you have chosen.

The test is to shoot respectable groups at ever-increasing distances. For accurate use of the Horus reticle, the group’s diameter should not exceed one minute of angle (1 MOA).

As you increase the distance of the shot, at some point the limitations of the bullets and/or the rifle and/or your skill will make it impossible for you to shoot a 1-MOA group. The greatest distance at which you can shoot such a group is your limit of accuracy.

Of course you can take longer shots, but the probability of a hit on the first shot decreases as you go.

Disclaimers
Product details, specifications, and images may not reflect current features and are subject to change without notice. Though scope distances are shown in yards, all Horus scopes can be used in either the English or metric system. Full disclaimer at www.horusvision.com/terms.php.

Horus reticle designs and products are covered by U.S. and foreign patents and patents pending. © 2015 Horus Vision. All rights reserved.

WARNING!
Please be careful when using firearms. A mistake in judgment, a lapse of attention, or a malfunction of any kind can result in serious injury or death.

Handling and shooting firearms are inherently dangerous activities. Follow all safety rules and laws when handling any type of firearm.

The information in this brochure is not a substitute for professional firearms training, which Horus Vision recommends. Please use this information with common sense. Remember that when you handle or shoot a firearm, you are assuming all risks.

The information in this brochure was believed to be accurate at the time of its publication.

Horus Vision accepts no responsibility for any accident or problem that might arise directly or indirectly from your use of this information.
Instructional Video

To learn more about Horus reticles, watch our instructional video.

www.HorusVision.com/Video